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We address a fundamental modeling issue in science as related to the field of dynamical systems: when is a
model of a physical system a ÒgoodÓ representation? Conjugacy provides a means to determine if two
systems are dynamically equivalent. We develop mathematical technology to decide when dynamics of a
ÒtoyÓ model are like �although not identical to� dynamics of the physical system, since the concept of
conjugacy is too rigid for such cases. We contrast the usual methodology where model quality is measured in
a Banach space to our dynamically motivated notion of matching orbits as best as possible. We highlight our
methods with a lower-ordered model of a “noisy” logistic map and also a simplified model of a Lorenz system
such that the usual one-dimensional map model is not exactly justified in the traditional sense.
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I. INTRODUCTION

A standard approach to quantifying model accuracy is to
measure how “close” the model is to the original system.
Often overlooked, however, is that defining “close” depends
upon what aspects of the system we are trying to model. In
many cases, prediction is our modeling goal, such as when
forecasting the weather. The quality of prediction is
grounded in numerical analysis on Banach spaces: the
“goodness” of short term predictions is based on measure-
ment of residual error. However, in dynamical systems, a
model’s quality is typically not based on such error analysis.
Continuing, for sake of example, in the field of meteorology,
we cite a famous historical example to highlight this long
recognized issue. Consider Lorenz’s 1965 paper about his
28-variable ordinary differential equation model of the
weather �1� which consists of a Galerkin’s projection of a
two-level geostrophic model of atmospheric fluid flow.
About the matter of choice of parameter values which are
initially free in the model, the tuning of which leads to dra-
matically different dynamic behavior due to a plethora of
possible bifurcations, Lorenz says: “Our first choice of con-
stants lead to periodic variations. Subsequent choices yielded
irregular….” Expert knowledge as a meteorologist concern-
ing what “reminded” him of realistic weather oscillations
guided the model choice. He used a similar modeling ap-
proach even by the time of his 1998 paper on a 40-variable
model �2�. As modeling moves across the sciences, the ap-
plied dynamical systems community still tends to choose the
“best model” from a model class in an intuitive manner.

In general, when one proposes a mathematical model for
some system, the model provides a simplified representation.
Modeling can be viewed as the art and science of choosing a
“good” representation, where the evaluation of the model’s
“goodness” is based on how well it satisfies the purpose for
which we are modeling. For example, if we want a simplified
representation of the relationship between two variables in a
system such that given one, we could predict the other, tech-

niques of approximation theory can find a mathematical
model that matches data collected from the system. Choosing
an appropriate description of “error” in the problem �least
squares, square integral, maximum, etc.� we can find a well-
defined “best” model for our system within a model class
�linear functions, for example�. The field of dynamical sys-
tems provides an alternative purpose to the modeling pro-
cess, focusing not on predicting behavior of the system, but
rather, on qualitative characterization of the system. The
three-variable Lorenz system illuminates the richness of be-
havior that might be created by a convection flow, but is not
meant for actually computing that flow. Since the beginnings
of the field of dynamical systems by Henri Poincaré �3�,
characterizing a dynamical system asked us to examine to-
pological and geometric features of orbits, rather than focus-
ing on the empirical details of the solution of the dynamical
system with respect to a specific coordinate system. One
seeks to understand coordinate independent properties, such
as the periodic orbit structure—the count and stability of
periodic orbits. The question of whether two systems are
dynamically the same has evolved into the modern notion of
deciding if there is a conjugacy between them �4–8�.

Given these notions, we often speak of a “toy model”—a
dynamical system which is much “like” the “real” system.
These subjective evaluations are assertions that the model is
satisfactory, but fails to distinguish excellent models from
fair ones. We assert that quantifying the quality of a model is
an essential problem in science. A primary interest of this
work will be to develop principles and methods to compare
dynamical systems when they are not necessarily equivalent
�in the sense of conjugacy�, but in a manner which respects
conjugacy.

II. BACKGROUND

Given two dynamical systems, g1 :X→X, and g2 :Y →Y,
the fundamental departure from a typical measurement of
approximation between the two dynamical systems is that we
do not directly compare g1 and g2 under an embedding in a
Banach space �e.g., measuring say �g1−g2�L2� because such
measurements pay no regard to the central equivalence rela-
tionship in dynamical systems—conjugacy. Two systems are
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conjugate if there is a homeomorphism h :X→Y between the
underlying phase space �h must be 1-1, onto, and continuous
and h−1 must be continuous�, and h must commute the map-
pings at each point x�X, such that h �g1=g2 �h. Practically, h
represents an “exact” change of coordinates so that the map-
pings behave exactly the same in either coordinate system.
We give the name “commuter” to any function f :X→Y sat-
isfying the commuting relationship

f � g1 = g2 � f , �1�

and note that a commuter will be a conjugacy only if it is a
homeomorphism. The commuter provides a matching be-
tween trajectories for g1 and g2; over and/or under-
representations are reflected as 1-1 and onto problems in f ,
while trajectories that permit matching only for finite time
are related to discontinuities in f . We develop measures of
commuters f that quantify “how much” the f may fail to be
a homeomorphism, which we call homeomorphic defect. Our
fundamental contribution is that we note that measurement
of defect allows us to quantify the dissimilarity of g1 and g2
in a manner that is consistent with the dynamical systems
approach. We remark on the broad applicability of our ap-
proach: if a mathematical model is a simplified description of
some system, then the model obviously is not equivalent to
the system; therefore the two are not conjugate. Our research
addresses this issue of quantifying the quality in a math-
ematically grounded manner.

III. PROTOTYPICAL EXAMPLE: MODELING A NOISY
LOGISTIC MAP

It is well-known that the logistic map g1�x�=rx�1−x� is
conjugate to the tent map g2�x�=a�1−2 �x− 1

2 � � for parameter
values r=4 and a=2. The conjugacy h�x�= 1

2 �1−cos��x��
provides perhaps the most studied example in the pedagogy
of dynamical systems for teaching conjugacy. However, if r
is perturbed even slightly, the conjugacy is broken. Now con-
sider a system with a much stronger perturbation, like a
noisy version of the logistic map of Fig. 1�a� using parameter
value of r=3.83 for the “prenoise” system. The noised ver-
sion is obviously not conjugate to a simple tent map. The
commuter shown in Fig. 1�b� is not a homeomorphism, since
it fails at least one-one-ness, which we see immediately by
direct inspection. The commuter gives an orbit equivalence
between the two maps and is the key to understanding the
quality of a model. One could argue that the tent map shown
is a good candidate to model this “noisy logistic map”—it
simplifies the small scale dynamics while capturing the pri-
mary dynamics of the large scale orbit structure.

On the other hand, a common pragmatic approach is to
smooth data, perhaps by a best least-squares model within a
model class such as ĝ2�x�=a2x2+a1x+a0. Alternatively, one
might choose to smooth the data, perhaps by using a smooth-
ing spline method �20� where the modeler must choose a
value for a given smoothing parameter �9–11�. This approach
is common in experimental science, and we have used it
ourselves, as in our own work for modeling the symbolic
dynamics of the Belousov-Zhabotinsky reaction chemical

system known only through measured data �12,13� as de-
picted in Fig. 2. Invariably, noise and errors corrupt the sig-
nal, and it is appropriate to simplify the data—standard prac-
tice in science. Our point is that modeling choices must be
made, whether it is how strong to tune the smoothing param-
eters � in the smoothing spline, what model class �quadratic,
cubic, etc.�, or how to handle boundary conditions. Such
choices yield slightly different models, none of which are
likely to be conjugate to each other, nor to whatever might be
the “true” dynamics. In each of these pragmatic approaches,
the judgment of quality for the minimization step is in a
Banach space, usually within the L2 norm, which is com-
pletely blind to the concept of conjugacy and dynamics.
Consequently, there is no a priori reason to expect this mod-
eling approach to be successful if the modeler’s intent is to
capture the topological dynamics, because it selects a model
that optimizes the wrong thing. �Although we note that we
have employed this approach ourselves in �12,13�.�

Defect measure of a commuter is designed to compare
model to data within the context of dynamical systems rather
than prediction. For example, the blue data set in Fig. 1
could be simply modeled by a smoothing spline, and that
approach has an appropriate context, such as minimizing the
short term prediction error between model and the system.
However, if the modeler wants to ignore the “noise” but
describe the underlying dynamics, then this simple approach
leads to some difficulties: An optimal denoising �in an L2
sense� should return the underlying map g�x�=3.83x�1−x�,
which lies in the “period-three window.” The smoothed map
would have a stable period-three orbit as its attractor,
whereas the original dynamics are transitive on an interval,
and the defect is large. The choice to model using tent maps
provides a model class that is simple, well-understood, easy

(a) (b)

FIG. 1. �Color online� Modeling a noisy logistic map. �a� Map
g1, nearby the logistic map 3.83x�1−x� in any Lp��0,1��, p�1 �but
not in the C1��0,1�� norm�, was constructed by perturbing the lo-
gistic map to force slope �g1��x� � =10 everywhere that it exists. The
stable period-three orbit is destroyed by the noise. The circles graph
a tent map g2 �with vertical extension� which is our “best” model
within the family of symmetric tent maps. �b� The resulting com-
muter f between g1 and this tent map g2 is reminiscent of the
homeomorphism h�x�= 1

2 �1−cos��x�� between the full logistic map
and the full tent map. However, whereas h is a diffeomorphism, f is
not even a homeomorphism, though the visual impression is that we
would not need to move the points �on the graph of f� very far to
achieve a homeomorphism.
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to analyze, and which should be sufficient to describe the
“larger” dynamics while ignoring the “noise;” but if the
modeler were to select a tent map that minimizes the L2
error, it will not provide the best description of the topologi-
cal dynamics. We suggest that choosing the tent map that
minimizes the defect of the commuter function is truer to the
notion of dynamical systems. As to the choice of the family
of tent maps to choose our model, we continue the argument:
In many contexts, we are more interested in modeling the
topological dynamics than we are with prediction. Certainly
there are smooth one-humped maps of all varieties which
could be fitted to those data sets in either of Figs. 1 and 2,
and generally, the result will suitably describe the dynamics.
However, it is often important to have a dynamically “simple
to analyze” model instead. Such has been the role of the tent
maps, mod-shift maps, and Renyi’ maps in general. For this
reason, throughout this work, we have generally chosen
piecewise linear maps with balanced slopes, as we believe it
is a standard modeling class to be employed when topologi-
cal dynamics are of primary concern.

IV. MEASURING DEFECT DEVIATION FROM
CONJUGACY

We have argued above that inspection of the commuter
function f between two dynamical systems g1 :X→X and

g2 :Y →Y is a natural way to understand the similarity of two
dynamical systems, which we roughly call “mostly conju-
gacy.” We will use measure-theoretic tools to quantify appro-
priate characteristics of f . Our introduction of mostly conju-
gacy is a measure theoretic construction related to the
topological notion of almost conjugacy and orbit equivalence
found in the symbolic dynamics literature �5,14�. We assume
f :D→R satisfies the commutative relationship �1�. In �15�,
we define a homeomorphic defect of f , denoted ��f�, as a
convex combination

��f� = �1�O�f� + �2�1−1�f� + �3�C�f� + �4�C−1�f� , �2�

with

�O�f� = �amount that f is not onto� ,

�1−1�f� = �amount that f is not 1 − 1� ,

�C�f� = �amount that f is not continuous� ,

�C−1�f� = �amount that f−1 is not continuous� .

where we acknowledge that f−1 may not be well-defined.
Furthermore, we require that weights 0��i satisfy 	�i=1.
These measure based quantities can be computationally ex-
pensive. Therefore when performing parameter fitting �to
find the “best” model�, which requires multiple evaluations
of the defect �cost� function, we often can find useful “sur-
rogates” for these defect measures, with this term reflecting
the broad approach from optimization theory to efficiently
tackle problems with expensive cost functions.

Judgement of model quality must be in terms of how we
choose to weight errors in each of the two phase spaces.
Therefore we assume measure spaces �D1 ,A1 ,�1� and
�D2 ,A2 ,�2�, where D1�X and D2�Y, A1 and A2 are
�-algebras, and �1 and �2 are measures. For technical cor-
rectness, we further assume the relative measures,

�2�f�A�� = �2�f�A � D1� � D2� , �3�

for arbitrary set A�X. The idea is that we want to restrict
ourselves to measuring image points that lie in D2 whose
preimage was in D1. Similarly, we define

�1�f−1�B�� = �1�f−1�B � D2� � D1� . �4�

D1 and D2 are “chosen” by the modeler as the portions of
phase space which are of interest, and measures �1 and �2
allow the modeler to vary the relative importance of different
parts of those sets. We refer to �15� for detailed definitions of
�O�f�, �1−1�f�, �C�f�, and �C−1�f�, which we summarize here.

To measure the onto deficiency, we desire to measure the
fraction of D2 which is not covered by the range of f . We
define the onto deficiency �O of the function f by

�O�f� = 1 −
�2�f�D1��

�2�D2�
. �5�

Note that commonly, the commuter f may have fractal
structure with the range of f a Cantor set. Therefore a sim-
plifying “suitable surrogate,” appropriate when D2 is an in-
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FIG. 2. �Color online� On smoothing and modeling. A common
practice when confronted with real world data is to apply a popular
smoothing filter, such as fitting a least-squares model from a model
class, or a smoothing spline such as shown here for a return map-
ping of a data set of reactant concentrations from a Belousov-
Zhabotinsky reaction �12,13�, with time-series inset. Different
choices of model parameters yield different “fitted” models all with
differing dynamical characteristics. The smoothing process does not
optimize with respect to dynamics, but, rather, with respect to an
assumed normed linear space. From the very relaxed curvature �the
shorter peaked red curve� to the middle curvature model �the higher
red curve�, we observe models that could be represented by a sub-
shift on two symbols �though the shifts are not topologically
equivalent�. For the �tallest� black curve, with the largest allowed
curvature of the three curves, we create dynamics of a many symbol
shift space. The choice of the curvature parameter which is “best”
for some application is typical of the type of decision that confronts
a modeler who must often rely on “expert knowledge” to select the
model.
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terval and �2 is absolutely continuous, is to quantify the lack
of onto-ness by finding the “biggest hole” in the range of f ,

G ª D2 − f�D1� , �6�

then a suitable surrogate is given by

�̃O�f� ª sup
I�G

m�I� , �7�

where I is an interval and m is Lebesgue measure.
To measure the 1−1 deficiency of the commuter f , on the

domain of f , we consider the extent of the “folding” �21�, a
measurement on the range, as well as measuring how much
of the domain participates in that folding. We proceed as
follows: we define G to be the collection of all subsets
G�D1 which satisfy that G is �1 measurable, f�G� is �2

measurable, and f restricted to G is 1−1. For any such G, we

denote the complement in D1 by Ḡ
D1−G. Then we define
the 1−1 defect by

�1−1�f� ª inf
G�G

� �1�Ḡ�
2�1�D1�

+
�2�f�Ḡ��
2�2�D2�

� . �8�

We may define a suitable surrogate in the standard case as
follows. We may simply identify the largest part of the range
that is multiply covered. We define envelope functions

e+�x� = sup
D1�y�x

f�y�, e−�x� = inf
D1�y�x

f�y� . �9�

Then e+�x� records the largest function value to the left of x,
while e−�x� records the smallest function value to the right of
x. Then

�̃1−1�f� = �e+�x� − e−�x��p �10�

in terms of any p-norm, and we typically choose p=�.
To measure a continuity deficiency, we will take a

measure-theoretic stance on the usual concept that continu-
ous functions map “small sets to small sets.” In particular,
we seek to identify when the f undergoes a “jump,” and
measure the jump. However, to allow the possibility of Can-
tor sets for D1 and D2, we define in terms of measures of
those sets. For each x0�D1 and for each 	
0, we define the
set

B�	,x0� ª �x:x � D1, �x − x0� � 	� , �11�

which creates a nested family of sets as 	↘0. We measure
the f-image of these sets by defining

a	�x0� ª inf
I�f�B�	,x0��

�2�I � D2�
�2�D2�

. �12�

Because a	�x0� is monotonically decreasing with decreasing
	, we can take the limit as 	↘0, defining

a�x0� ª lim
	→0+

a	�x0� , �13�

where we think of a�x0� as being the atomic part of f �16�.
We define

�C�f� ª sup
x0�D1

a�x0� . �14�

Note that if D1 is an interval, we can define a suitable surro-
gate,

�̃C�f� = �a�x0��p. �15�

We note that �̃C�f�
�C�f� when p=�, but the flexibility to
use other norms might prove useful in some situations.

V. APPLICATION—MODELING A LORENZ SYSTEM

As a concrete example of how defect can be used to find
optimal models, consider the flow generated by the Lorenz
system with parameters �=8/3, =60, and �=10. Although
this system is quite different from that studied by �19�, we
still apply that crucial technique by considering the map of
successive maxima. Figure 3 �panel 1� shows the plot of zn+1
vs zn for a long trajectory on the attractor. Because of the
strong contraction in the system, the resultant object “ap-
pears” to be one-dimensional when viewed from the macro-
scopic scale. With this motivating observation, we presume
the following modeling goal: Find a one-dimensional �1D�
map g2 from the class of functions of constant magnitude
slope that best models the dynamic behavior indicated by the
successive maxima map, g1. �Note: g1 has no algebraic de-
scription. Rather, it reflects a long orbit along the attractor
known only as a finite sequence of data, �zi�, the sequence of
successive maxima. Therefore it serves to illustrate how this
technique can be applied in modeling a physical system from
time series.�

A key step in developing commuters is to assign a parti-
tion in each of the spaces, where partitioning can be viewed
as equivalent to the symbol dynamics operation of assigning
a symbol to each region of phase space �4�. For 1D maps, a
typical partition assigns a symbol to each monotone segment.
If we ignore the fine scale structure, the maxima map admits
a very natural four-symbol partition, as illustrated by Fig. 3.

FIG. 3. Lorenz system, �=8/3, =60, and �=10. 500 000 iter-
ates of the successive maxima map, with symbols assigned to re-
gions of phase space. Observation of a trajectory reveals that the
iterates associated with symbol d are always followed by symbol a.
The inset highlights that although the map looks like a single curve
at macroscopic scales, fine resolution reveals that the “curve” is
actually a very thin fractal.
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Observation of a trajectory of the maxima map reveals that
points assigned to symbol d always iterate to points assigned
to symbol a. By requiring that our model have the same
allowable symbol transitions as g1, we are led to consider
candidate models of the form in Fig. 4, where a member of
the family of models is determined by parameters m and t,
and we denote the resultant map as g2�m,t�. This map is the
linear interpolation with nodes at the points

�0,2 − m + 2mt�, �t,2 − m + mt�, �1 − 1/m,1�, �1,0� .

When there is no confusion, or when we are addressing the
general case, we will simplify notation and denote g2�m,t�
simply as g2. We note that

�g2�� = m �16�

except at the knots.

Developing a “good” model equates to choosing param-
eter values m and t that create model dynamics that are simi-
lar to the dynamics of g1. No standard technique exists for
making this choice. Note that Eq. �17� gives the expansion
rate everywhere on the interval, and it immediately follows
that both metric and topological entropy of any g2�m,t� is ln m
�6�. Consequently parameter estimation using entropy meth-
ods will be unable to provide means to select t. Rather, we
get the best dynamical match by choosing m and t so that the
resultant commuter is as close as possible to being a conju-
gacy. For a fixed choice of parameter values, we solve the
functional equation

g2�m,n� � fm,t = fm,t � g1, �17�

to find the commuter fm,t, computed as the fixed point of the
operator

(a) (b)

FIG. 5. �Color online� Commuter functions. �a� Commuter functions fm,t between the Lorenz system and models g2�m,t� for several
choices of parameter values. For ease of visualization, we choose to provide a branched description of the commuter, where the lower branch
may be associated with symbol a. �b� The m=2.2, t=0.2 commuter is label with the symbol that is associated with each region of the domain
space.

a b c d

a

b

c

d

t

a

b

c

d

2 ( 1)m t- -

1 1/ m-

(a) (b) (c)
2dg

m
dx

=

FIG. 4. �a� A transition graph shows the symbol dynamics observed in the trajectory, with symbol assignment as in Fig. 3. �b� We capture
the same symbol dynamics by a 1D continuous map of the interval. The grayed blocks indicate the allowed symbol transitions, and the curve
drawn through the gray blocks is a possible choice of 1D map that yields those symbol transitions. Note that we are not requiring a Markov
property of the partition, so that the map need not map exactly across a partition �4�. �c� From our assumed modeling class �maps of constant
magnitude slope�, we show a �typical� member of subset of that class which is consistent with the required symbol dynamics. The family of
such maps are parametrized over the slope magnitude, m, and the turning point, t.
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C�f� = g2�m,n�
−1 � f � g1. �18�

Because g1 is known only at each zi, the commuter f is
approximated by computing only at these same ordinates, so
that g1�zi�¬zi+1 contributes no error to the computation of
g2

−1 � f �g1. Figure 5 shows examples to visually assess which
might be the best commuter, since homeomorphism would
be optimal.

To find the “best” model, we use defect as a cost function
to “measure” the difference between the Lorenz system and a
model. Because fm,t is computed on a finite set of ordinates,
measure based computations can be problematic. To sim-
plify, we use surrogate methods to compute a defect. Let

�̃�f� = �largest vertical gap in each branch�

+ �vertical gap between branches�

+ �largest horizontal segment in each branch� .

This choice of defect ignores fine scale many-to-oneness of
the commuter. These small scale variations are consequences
of the fact that the maxima map is not a curve, but a thin,
fractal structure. Ignoring the fine scale “fuzziness” of the
commuter is consistent with our modeling goal of simplifi-
cation.

If we use the Lebesgue measure of intervals, then evalu-
ation of the defect on a grid of parameter values indicates
that a good choice for the parameters is m=2.27, t=0.247.
As an alternative approach, the modeler might decide that it
is more important for the model to accurately capture the
dynamics which are most frequently observed. Then instead
of the Lebesgue measure on D1, one would choose the natu-
ral measure on the dynamics, which we assume is reflected
by the density of points in the long trajectory. To account for
this change of emphasis, we measure horizontal segments
not by their geometric length but by the fraction of the zi that
falls in that interval. Recomputing the defect over the grid of
parameter values, we find that the modeler should choose
m2.01, t0.073. We emphasize that the expert knowledge
of the modeler remains a crucial input to this process as the
modeler must decide what is “important” for the model to be
able to describe. The techniques simply give the modeler a
principled way to select the parameter values. Figure 6 illus-
trates this method of parameter selection.

Despite the continued popularity and historical signifi-
cance �1�, it is known that the z-successive maxima map is
not an embedding because successive maxima of z�t� are
simply the zero-crossings Poincaré section on the derivative
of z, on which there is a symmetry. In other words, the ob-
servation function is given by ��x ,y ,z�= �z�ªxy−bz. The
symmetry of this observer in the x ,y variables means that
there is no way to distinguish x from y using this observa-
tion. Hence the measurement function is “nongeneric” in the
language of the family of Taken’s embedding type theorems,
in that there is no conjugacy between the delay embedding
and proper Poincaré map. We remark that conjugate model-
ing is not the thesis of our paper—our formalism is meant to
allow comparison between dynamics which are not necessar-
ily conjugate. Real data sets cannot always be guaranteed to

FIG. 6. Contour plot of “defect” over parameter space �a,c� and
associated commuter �b,d� for the optimal model �inset�. The top
row �a,b� computes defect using the Lesbegue measure on the hori-
zontal, while the bottom row �c,d� of plots is based on the natural
measure on the horizontal.

(a) (c)

(b) (d)

FIG. 7. �Color online� Comparing Poincaré map to the model.
�a� The successive return map has disjoint components but appears
nearly one-dimensional. �b� By taking absolute values, we see the
symmetry projection is shaped similar to our model of the succes-
sive maxima. �c� The optimal model from the successive maxima,
g2�2.01,0.73�, is used as a comparative map; and �d� the resultant
commuter between g3�x� and g2�y�, the linear model. The “fuzzi-
ness” in the commuter is expected, since the map g3 lies on a fractal
object which is higher than one-dimensional.
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be embeddings, and we have presented a method to best
model such data sets without the restriction of requiring con-
jugacy. However, in this case we do have the Lorenz equa-
tions of motion for which one can construct a true Poincaré
section, and we may use this as a means to test the robust-
ness of the approach.

To continue with our data driven approach, we assume
that the x and z components of the Lorenz system are a
measurable variable in some unknown continuous process.
We construct a sequence �xi� of crossings of the plane z
=64. This plane is selected based on the observed time se-
ries, to retain the “realism” of the process as having come
from a physical system �as opposed to selecting the plane
using analytic methods, such as described in �22��. For the
given sequence, we can define

g3�xi� ª xi+1

as the successive maxima map. By exploiting the symmetry
in the return map, we compare the dynamical properties of
the return map to the optimal model of the successive
maxima. The resultant commuter is a 2-1 projection, as
should be expected. The Poincaré map analysis data is shown
in Fig. 7.

If we denote the commuter from g1 to g2 as f1 and denote
the commuter from g3 to g2 by f3, then we can envision the
relationships by the commutative diagram:

Z ——→
g1

Z

f1↓ ↓ f1

Y ——→
g2

Y

f3↑ ↑ f3

X ——→
g3

X

. �19�

We note that when we project the “real” dynamics to the
model, we are projecting onto one-dimensional dynamics, so

we expect that information �fine scale orbit structure� will be
lost. Additionally, just as a linear regression is not a perfect
model, that projection has error—additional dynamics which
are not present in the original system. To assess the validity
of our overall approach we note that from a particular
Poincaré section crossing xj, we may integrate to the next
maxima in z, and from there, integrate further, to the next
crossing at xj+1. Then along a particular trajectory on the
attractor, each maxima �recorded as a z value� is followed
deterministically by an x value at the subsequent crossing.
By abuse of notation, we can envision a relationship

x = g�z�

that describes a set of points in the z-x plane which will
appear to be nearly a one-dimensional curve �but slightly
thicker�. Obviously, the symmetry created causes us to ex-
pect two x values for each z. Because Eq. �19� does not
describe conjugacy relationships, the best that we can expect
is that

g�z�  f3
−1 � g2 � f1. �20�

We note that on the right-hand side of Eq. �20�, we are ex-
pecting our linear model g2 to describe the dynamics. Com-
parison of g�z� with f3

−1 �g2 � f1 in Fig. 8 indicates the fidelity
of model g2.

VI. CONCLUSION

Here, we have opened a discussion of how the art of
modeling can be cast in the language of dynamical systems
by an appropriate extension of the usual notion of conjugacy

FIG. 8. �Color online� Analyzing model fidelity. �a� The exact relationship x=g�z� as found by integration using a long trajectory to create
100 000 �z ,x� pairs. �b� Using the same ordinates as the left panel, we use nearest-neighbor interpolation to find f3

−1 �g2 � f1. �c� The relative
error of the approximation is computed for each of the 100 000 points, and collected statistics are organized in a cumulative distribution plot
showing the fraction of the data points whose error is less than �. We note that about 40% of the points are accurate to machine precision,
while 
90% have relative error smaller than 0.005. Large errors represents the information loss by forcing the intermediate representation
of g2, where we know that information must be lost because g2 is not conjugate.
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to the generalized concept to measure a defect in a commuter
function. We have discussed parameter estimation within this
context, leading to a well-defined concept of quality of sim-
plified toy models representing the nature of the dynamics of
a full system. We have noted that expert knowledge of the
modeler need not, and even should not, be mathematically
removed from the process.

ACKNOWLEDGMENTS

This work was supported by the NSF under Grant No.
DMS-0708083. We would also like to thank the referee for
very useful comments which significantly improved the re-
vised version of this paper.

�1� E. Lorenz, Tellus 17, 321 �1965�.
�2� E. N. Lorenz and K. A. Emanuel, J. Atmos. Sci. 55, 399

�1998�.
�3� H. Poincare, Les M’ethods Nouvelles de la M’ecanique

C’eleste �Gauthier-Villars, Paris, 1892�.
�4� C. Robinson, Dynamical Systems; Stability, Symbolic Dynam-

ics, and Chaos, 2nd ed. �CRC Press, Boca Raton, FL, 1999�.
�5� B. Kitchens, Symbolic Dynamics, One-sided, Two-sided and

Countable State Markov Shifts �Springer, New York, 1998�.
�6� E. Ott, Chaos in Dynamical Systems, 2nd ed. �Cambridge Uni-

versity Press, Cambridge, England 2002�.
�7� J. Guckenheimer and P. Holmes, Nonlinear oscillations, dy-

namical systems, and bifurcations of vector fields �Springer,
New York, 1982�.

�8� R. L. Devaney, An Introduction to Chaotic Dynamical Sys-
tems, 2nd ed. �Westview, New York, 2003�.

�9� C. H. Reinsch, Numer. Math. 10, 177 �1967�.
�10� C. H. Reinsch, Numer. Math. 16, 451 �1971�.
�11� Matlab, Spline Toolbox, CSAPS 7th ed. �Mathworks, Natick,

MA, 2006�.
�12� E. M. Bollt and M. Dolnik, Phys. Rev. E 55, 6404 �1997�.
�13� M. Dolnik and E. M. Bollt, Chaos 8, 702 �1998�.
�14� D. Lind and B. Marcus, An Introduction to Symbolic Dynamics

and Coding �Cambridge Univversity Press, New York, 1995�.

�15� J. D. Skufca and E. M. Bollt �unpublished�.
�16� By atomic part, we mean to use the Lebesgue decomposition

of a function �17� into its continuous part and atomic part,
f�x�=c�x�+a�x�. The theorem applies to functions of bounded
variation, and sometimes f will not satisfy this hypothesis.
However, since we do not require an actual decomposition, we
view our verbiage as a minor abuse of notation. See �18� for a
further discussion of this general decomposition.

�17� A. Kolmogorov and S. Fomin, Introductory Real Analysis �Do-
ver, New York, 1975�.

�18� P. Halmos, Measure Theory �Springer, New York, 1974�.
�19� E. N. Lorenz, J. Atmos. Sci. 20, 130 �1963�.
�20� A smoothing spline is a minimization of the functional,

�	i=1
n �yi− f�xi��2+ �1−��� �D2f�t��2dt, within the class of

piecewise polynomial functions. The convex combination bal-
ances the competing elements of the usual least-squares ap-
proximation when �=0 and a spline interpolant through all the
points when �=1 �9–11�.

�21� By “folding,” we mean to measure many-to-oneness, quantify-
ing the amount of the range which has multiple preimages.

�22� C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and
Strange Attractors �Applied Mathematical Sciences, Springer,
New York, 1982�.

JOSEPH D. SKUFCA AND ERIK M. BOLLT PHYSICAL REVIEW E 76, 026220 �2007�

026220-8


